نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک دانشگاه تحصیلات تکمیلی علوم پایه زنجان، گاوازنگ ، زنجان

2 گروه فیزیک، دانشگاه بث، کلاورتون داون، باث BA2 7AY، انگلستان

چکیده

اکسید گرافن، شکل نیمه اکسید شدۀ گرافن  و عایق الکتریکی است. از اکسید گرافن می‌توان در ساخت قطعات الکترونیکی با مقاومت و ظرفیت متغیر( مقاومت حافظه‌دار و حافظۀ ظرفیتی) و میکروابرخازن‌ها با ساختار فلز/عایق/فلز استفاده کرد که تغییر حالت قطعه بر اساس رشد خوشه‌های گرافن در اثر کاهش لایۀ اکسید گرافن رخ می‌دهد. این فرایند رشد خوشه‌ها، یک فرایند الکتروشیمیایی برگشت ناپذیر است که به پارامترهای زیادی چون میزان میدان الکتریکی اعمالی و رطوبت محیط بستگی دارد و با کنترل آن می‌توان قطعات  پایداری به منظور حافظۀ ظرفیتی یا ابرخازن ساخت. در این تحقیق از مادۀ اکسندۀ پرمنگنات پتاسیم  برای کنترل  سرعت فرایند کاهش اکسید گرافن استفاده شده است و با توجه به مقدار پرمنگنات پتاسیم و مقدار میدان الکتریکی اعمالی در شرایط محیطی سه رفتار در ولتامتری  نمونه مشاهده می‌شود که می‌توان از این ساختار در ساخت مقاومت حافظه‌دار، قطعات یونی(ابزارهایی که فرایند یونی در آنها غالب است) و میکروابرخازن استفاده کرد. در این تحقیق، نتایج به‌دست ‌آمده بررسی و عملکرد قطعات مورد نظر مطالعه می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Behavioral study of devices fabricated by graphene oxide and potassium permanganate composite

نویسندگان [English]

  • Fatemeh Haghshenas Gorgabi 1
  • Kamal Asadi 2
  • Davood Abbaszadeh 1

1 Physics Department, Institute for Advanced Studies in Basic Sciences, Zanja, Iran

2 Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK

چکیده [English]

Graphene oxide is an oxidized form of graphene and an electrical insulator. Graphene oxide can be used in the fabrication of electronic devices with variable resistance and capacitance (memristor and capacitive memory) and micro-supercapacitors in a metal/insulator/metal structure, where the state of the device changes based on the growth of graphene dendrites due to the reduction of the graphene oxide layer in the presence of  moisture and applied electric field. The dendrites growth process is an irreversible electrochemical process that depends on many parameters such as the applied electric field and the environmental humidity. By controlling its reduction, suitable and stable devices can be fabricated as ionic devices like supercapacitors. In this research, potassium permanganate, which is an oxidizing agent, was used to control the rate of the graphene oxide reduction process. Depending on the amount of potassium permanganate and the amount of the applied electric field in the environmental conditions, three different behaviors are observed in the voltammetric responseof the samples. Such behaviors can be used in the fabrication of memristors, ionic devices (devices in which the ionic process is dominant), and micro-supercapacitors. In this research, the obtained results are discussed and the performance of the devices is studied.

کلیدواژه‌ها [English]

  • Graphene oxide
  • Potassium permanganese
  • Memristor
  • Micro-supercapacitor.Electrochemical reduction
  1. K Andre, and S Konstantin Novoselov. Nature materials6 (2007) 183.
  2. W Li, M Wojcik & K Xu. Nano Letters19 (2019) 983.
  3. A Eng, A Ambrosi, C Chua, F Šaněk, Z Sofer & M Pumera. Chemistry–A European Journal 19 (2013) 12673.
  4. M Zhou, Y Wang, Y Zhai, J Zhai, W Ren, F Wang & S Dong. Chemistry–A European Journal15 (2009) 6116.
  5. P Samuele, E Accornero, C Pirri, and C Ricciardi. Carbon 85 (2015) 383.
  6. D Sahu, P Jetty, S Jammalamadaka. Nanotechnology32 (2021) 155701.
  7. X Guo, L Huang, X Zhou, Q Chang, C Cao, G Xiao & W Shi. Advanced Functional Materials 30 (2020) 2003635.
  8. F Gorgabi, M Morant-Minana, H Zafarkish, D Abbaszadeh, K Asadi. Journal of Materials Chemistry C 11 (2023) 5.
  9. M Morant-Minana, J Heidler, G Glasser, H Lu, R Berger, N Gil-Gonzalez, K Mullen, D M de Leeuw and K Asadi. Materials Horizons 6 (2018) 1176.
  10. H Teoh, Y Tao, E  Tok, G  Ho, and C  Applied Physics Letters 98 (2011).
  11. S Senthilkumar, R Kalai Selvan, and J  Journal of Materials Chemistry A 1.40 (2013) 12386.
  12. E Kady, F Maher, and B Nature communications 4.1 (2013) 1475.
  13. K Kim, S  Park, I Kim, B Park, S  Kim & C Yang, npj Flexible Electronics 8 (2024) 18.
  14. Z Wu, K Parvez, X Feng & K Müllen. Nature communications 4 (2013) 2487.
  15. X Yuxi, H Bai, G Lu, C Li, and G Shi.Journal of the American Chemical Society 130 (2008) 5856.
  16. K Shiyanova, M Gudkov, M Rabchinskii, L Sokura, D Stolyarova, M Baidakova, D Shashkin, A Trofimuk, D Smirnov, I Komarov, V Timofeeva. Nanomaterials 3 (2021) 915.
  17. W Hummers and R Offeman. J Am Chem Soc. 80 (1958) 1339.
  18. L Woo, et al. The Journal of Physical Chemistry C 5 (2014) 2834.
  19. M Beidaghi., & C Wang. Advanced Functional Materials22 ((2012) 4501.
  20. X Wang, B Liu, R Liu, Q Wang, X Hou, D Chen, ... & G Shen Angewandte Chemie126 (2014), 1880.
  21. M Kashif, E  Jaafar, P Bhadja, F Low, S Sahari, S Hussain, F Loong, A Ahmad, T AlGarni, M Shafa,  and H Asghar.  Arabian Journal of Chemistry 14 (2021) 102953.
  22. J Hummers, S William, and E Richard.  Journal of the american chemical society 6 (1958) 1339.
  23. N Said, W Liu, W Chin, N Noriman, and U Hashim.  advanced materials research 1133 (2016) 476.
  24. O Kasinath, O Anjaneyulu, and A Ganguli. Current Science(2014) 397.
  25. K Muhammad, E Jaafar, P Bhadja, F Low, S Sahari, S Hussain, F Loong et al. Arabian Journal of Chemistry 14 (2021): 102953.
  26. A Kseniya, V Maksim. K Gudkov, M Rabchinskii, A Liliia. Y Dina, V Stolyarova, et al.  Nanomaterials 11,  (2021) 915.
  27. O Vryonis, T Andritsch, S Vaughan, and P Journal of materials science 54 (2019) 8302.

ارتقاء امنیت وب با وف بومی