نویسندگان

دانشکده فیزیک، دانشگاه شهید بهشتی، تهران

چکیده

تعیین اندازه ذرات یکی از نیاز‌های مهم در صنعت و بیوتکنولوژی به شمار می‌رود. پراکندگی دینامیکی نور (DLS) یکی از پرکاربرد‌ترین روش‌ها در تعیین توزیع اندازه ذرات کروی در مقیاس نانو و زیر- میکرون است. در این روش الگوریتم‌های متفاوتی برای تعیین اندازه و توزیع اندازه ذرات وجود دارد، که با توجه به دقت مورد نیاز و همچنین نمونه مورد آزمایش انتخاب می‌شوند. در این پژوهش، مروری بر نظریه پراکندگی دینامیکی نور و الگوریتم‌های متداول تعیین اندازه ذرات انجام شده است. دقت و محدوده عملکرد تحلیل تجمعی (cumulant) و الگوریتم تداومی (contin) در بازه گسترده‌ای از اندازه ذرات استاندارد پلی‌استایرن در محدوده نانو و زیر- میکرون (900-20 نانومتر) به صورت تجربی بررسی می‌شود. نشان داده می‌شود که اندازه ذرات استاندارد به دست آمده توسط هر دو الگوریتم، با اندازه گزارش شده توسط شرکت سازنده مطابقت دارد. از آنجا‌یی‌که اغلب نمونه‌های مورد بررسی ذرات هم‌اندازه با توزیع اندازه باریک نیستند، نمونه‌های ترکیبی متشکل از دو ذره استاندارد با اندازه متفاوت، توسط هر دو رهیافت برای بررسی عملکرد DLS در نمونه‌های غیراستاندارد مورد آزمایش قرار گرفتند. تحلیل تجمعی اندازه‌ای را گزارش می‌کند که با اندازه هیچکدام از ذرات برابر نیست. اما مقدار شاخص بس ‌پراکندگی نشان‌دهنده توزیع اندازه بسیار گسترده نمونه است. الگوریتم تداومی هم تنها یک اندازه را گزارش می‌کند که با اندازه هیچکدام از ذرات برابر نیست اما به اندازه ذره بزرگ‌تر نزدیک است. نتایج به دست آمده از هر دو الگوریتم نشان‌دهنده عدم توانایی روش پراکندگی دینامیکی نور در تعیین اندازه ذرات در نمونه‌های ترکیبی مورد آزمایش است.
 

کلیدواژه‌ها

عنوان مقاله [English]

Determination of the size distribution of monodesperse and bidisperse mixtures of spherical particles in the nanometer and submicron size range by applying cumulant analysis and contin algorithm in dynamic light scattering

نویسندگان [English]

  • S H Hooshmand Ziafi
  • M Dashtdar

چکیده [English]

Determination of particle size is one of the major needs in the industry and biotechnology. Dynamic light scattering (DLS) is a widely used technique for determining size distribution of spherical particle in nanometer and submicron size range. In this method, there are different algorithms for determining the size and size distribution of particles, which are selected according to the required accuracy as well as the sample. In this paper, a review of the theory of DLS and commonly used algorithms to determine particle size, have been carried out. The accuracy and performance range of the two common Cumulant analysis and Contin algorithm have been experimentally investigated, by using the wide range of sizes (20-900 nanometer) of standard spherical polystyrene particles. It is shown that both algorithms results are quite consistent with the manufacturer’s values for diameter of particles. Since most of the samples in the more common situation are not uniform particles with a narrow size distribution, mixtures of two standard particles of different sizes were studied by both algorithms to test the performance of DLS in non-standard samples. Method of Cumulant reports one size that is not consistent with the size of any particles in the sample. However, the polidispersity index (PDI) indicates that the sample size distribution is very wide. Method of Contin reports only one size that is not also consistent with the size of any particles, but, it is closer to the larger one. The results of both algorithms indicate that the DLS fails to determine size distribution in the mixed samples. 

کلیدواژه‌ها [English]

  • dynamic light scattering
  • polydispersity
  • cumulant analysis
  • contin algorithm
  • autocorrelation function
1. A M Doyle, S K Shaikhutdinov, and H Freund, Angew. Chem. Int. 44 (2005) 629.
2. A J Maira, K L Yeung, C Y Lee, P L Yue, and C K Chan, J. Catal. 192 (2000) 185.
3. J Sarkar, P Pal, and G B Talapatra, Chem. Phys. Lett. 401 (2005) 400.
4. H G Merkus, “Particle Size Measurements”, Springer (2009).
5. B J Berne and R Pecora, “Dynamic Light Scattering: With Application to Chemistry, Biology and Physics”, Wiley (1975).
6. R Pecora, “Dynamic Light Scattering: Application of Photon Correlation Spectroscopy”, Plenum Press (1985).
7. W Scharlt, “Light Scattering from Polymer Solutions and Nanoparticle Dispersions”, Springer (2007).
8. N Ostrowsky, D Sornette, P Parker, and E R Pike, Opt. Acta 28 (1981) 1059.
9. S W Provencher, Comput. Phys. Commun. 27 (1982) 229.
10. J C Thomas, Adv. Colloid Interface Sci. 117 (1987) 187.
11. G Alastair Mailer, S Paul Clegg, and N Peter Pusey, J. Phys. Condens. Mat. 27 (2015) 145102.
12. M Chang, BGGN266 (2010).
13. H Kato, A Nakamura, and N Noda, Mater. Express 4 (2014) 144.
14. J Barbara Frisken, Appl. Opt. 40 (2001) 4087.
15. A Scotti, W Liu, J S Hyatt, E S Herman, H S Choi, J W Kim, L A Lyon, U Gasser, and A Fernandez Nieves, J. Chem. Phys. 142 (2015) 234905.
16. R Finsy, ‎Adv. Colloid Interface Sci. 52 (1994) 79.
17. C Cruickshank Miller, Proc. Royal Soc. Lond. A 106 (1924) 724.
18. W Brown, “Data analysis in dynamic light scattering in Dynamic Light Scattering”, Oxford University (1993).
19. J Philipus Patty and J Barbara Frisken, Appl. Opt. 45 (2006) 2209.
20. D E Koppel, J. Chem. Phys. 57 (1972) 4814.
21. J K G Dhont, “An Introduction to Dynamics of Colloids”, Elsevier (1996).
22. B Chu, “Laser Light Scattering: Basic Principles and Practice”, Courier Corporation (1991).
23. S W Provencher and P Štěpánek, Part. Part. Syst. Charact. 13 (1996) 291.
24. I-G Marino, rilt, Matlab central (2013).
25. P C Hansen, “Computational Inverse Problems in Electrocardiology”, WIT Press (2000)
26. H J Rabal and R A Braga Jr, “Dynamic Laser Speckle and Applications”, CRC Press (2009).
27. J Vanhoudt and J Clauwaert, Langmuir 15 (1999) 44.

ارتقاء امنیت وب با وف ایرانی