نوع مقاله : یادداشت پژوهشی

نویسندگان

دانشکدة فیزیک، دانشگاه شهید بهشتی، 1983969411، تهران

چکیده

مطالعة ساختارهای بزرگ مقیاس کیهانی، از رهیافت میدان‌های تصادفی اطلاعات مهمی در خصوص شرایط اولیه و تحول آنها فراهم می‌کند. در این مقاله با تکیه بر ویژگی‌های مقیاسی میدان‌های تصادفی، خواص ‌هندسی میدان چگالی مادۀ تاریک را در شبیه‌سازی‌هایN -ذره‌ای بررسی می‌کنیم. برای این منظور خاصیت مقیاسی مربوط به خطوط هم‌چگال در میدان‌های (2+1)بُعدی بریده‌ شده از میدان (3+1)بُعدی، شبیه‌سازی‌های N-ذره‌ای مادۀ تاریک را که توسط بُعد فراکتالی تعمیم یافته Dq قابل کمّی شدن است، بررسی می‌کنیم. خاصیت مقیاسی برای میدان مذکور در تمام انتقال به سرخ‌های موجود در شبیه‌سازی، برقرار است. کل کانتورهای همتراز چگالی در بزرگ‌ترین انتقال به سرخ قابل دسترس، ماهیت یک شکل هندسی منتظم دارند اما با کاهش انتقال به سرخ، میدان مذکور خاصیت چندفراکتالی پیدا می‌کند. با توجه به ناگوسیت میدان در انتقال به سرخ کم، منشأ این چند فراکتالی غالباً همین انحراف تابع توزیع از حالت گوسی است. تحول نمای مقیاسی Dq بر حسب انتقال به سرخ نشان می‌دهد که به ازایq های مثبت، ماهیت تک‌فراکتالی تقریباً حفظ می‌شود و این در حالی است که این نما برایq های منفی به شدت به انتقال به سرخ وابسته است و از این رو می‌تواند به عنوان معیاری حساس به منظور یافتن تمایز بین مدل‌های مختلف تشکیل ساختارهای بزرگ مقیاس کیهانی، مورد توجه قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Evolution of the generalized multifrcatal dimension of dark matter density field in the Illustris simulation

نویسندگان [English]

  • M Yousefzadeh
  • S M S Movahed

Department of Physics, Shahid Beheshti University, 1983969411, Tehran, Iran

چکیده [English]

The study of cosmic large-scale structures provides valuable information regarding the initial condition and the evolution of random filed approaches. In this paper, relying on  the scaling properties of stochastic field, we examine the geometric properties of the dark matter density field in the N-body simulations. To this end, we examine the scaling properties of iso-density lines in the (1+2)-dimensional fields that are cut-out from the (1+3)-dimensional fields of the N-body simulations that are quantifiable using the modified multifractal dimension, D_q. The scaling properties holds for the afore-mentioned fields in all existing redshifts in the simulation. All iso-density threshold contours display a regular geometric shape in the highest accessible redshift, but they exhibit a multifractal property when reducing the redshift. Due to the non-Gaussianity of the low redshift transitioning fields, the multifractal property can mostly be caused by the distribution function's deviation from Gaussianity. The evolution of the D_q scaling exponent with respect to redshift demonstrates that for  the positive q's, the monofractal property mostly holds, while the  mentioned exponent is highly redshift dependent for the negative q's. This can be employed as a sensitive criterion for distinguishing different models for large-scale cosmic structure formations

کلیدواژه‌ها [English]

  • random field
  • scaling properties
  • dark matter N-body simulation
  1. V J Martinez and E Saar, "Statistics of the galaxy distribution", CRC press (2001).

  2. ‎ J Einasto and E Saar,  "Superclusters of galaxies", in IAU Symposium, 124 (1987).‎

  3. ‎ https://www.euclid-ec.org/‎

  4. ‎ V Desjacques, J Donghui, and S Fabian, Physics reports ‎‎733 (2018) 1.‎

  5. ‎ T Matsubara, The Astrophysical Journal 584, 2,1 (2003) 33.

  6. ‎ W Fang, B Li, and G B Zhao, Physical review letters 118, 18 (2017) 181301.‎

  7. ‎http://facultymembers.sbu.ac.ir/movahed/index.php/courses/132-advanced-course-on-computational-‎physics

  8. ‎ R H Landau and J P Manuel ‎‏"‏Computational physics: problem solving with computers‏"‏‎. ‎Wiley (2007).‎

  9. ‎ Gouyet, Jean-François, ‎‏"‏Physics and fractal structures‏"‏‎, Paris/New York: Masson Springer‎, ISBN 978-0-387-94153-0 (1996).

  10. ‏ ب خاقانی. ‎رساله کارشناسی ارشد، دانشگاه شهید، تهران. ‏

    1. ‎Lorensen, William and Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface ‎Construction Algorithm. Computer Graphics (SIGGRAPH 87 Proceedings) 21(4) July 1987, p. 163-170)‎

    2. ‎ http://sina.sharif.edu/rahvar/statistics

    3. ‎ White, Simon DM. arXiv preprint ‎astro-ph/9410043 (1994).‎

    4. ‎ C M Baugh, E Gaztanaga, and G Efstathiou; Mon. Not. Roy. Astron. Soc. 274 (1995) 1049‎‏.‏

    5. ‎ Nelson, Dylan, et al; ‏ Astronomy and Computing 13 ‎‎(2015) 12.‎

    6. ‎ Springel, Volker. Monthly Notices of the Royal Astronomical Society 401, 2 (2010) 791.‎

    7. ‎ R colistete ‎‎, J C Fabris, S V B Goncalves and P E de Souza, Int. J. Mod. Phys. D 13 (2004) 669.‎

    8. G Hinshaw, D Larson, E Komatsu, et al. Astrophys. J. Suppl (2013),., 208, 19.18. Jr.

    9. ‎ A Banihashemi, N Khosravi, and A H Shirazi. ‎Physical Review D 99, 8 (2019) 083509. ‎

    10. ‎ N Khosravi, et al. Physical ‎Review D 99, 10 (2019): 103526‎‏.‏



‎ I Eghdami, H Panahi, and S M S Movahed. The Astrophysical Journal 864, 2 (2018) 162.

تحت نظارت وف ایرانی