نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه قم، قم

2 استادیار، گروه فیزیک، دانشگاه قم، قم، ایران

چکیده

در این مقاله خواص اپتیکی نانوساختارهای بیضی شکل نقره با استفاده از تقریب دوقطبی مجزّا در محیط آب مورد بررسی قرار گرفت. سطح مقطع‌های جذب، پراکندگی و خاموشی این دسته از نانوساختارها بر حسب تغییرات طول موج نور فرودی در ناحیۀ مرئی و فروسرخ نزدیک محاسبه شد. همچنین تغییرات ارتفاع، طول موج و پهنای نواری قله‌های سطح مقطع خاموشی (ناشی از تشدید پلاسمونی) بر حسب اندازۀ نانوذرات و ثابت دی‌الکتریک محیط مورد بررسی قرار گرفت. نتایج نشان ‌می‌دهد که تنها دو قلۀ مد دو قطبی عرضی و طولی در این طیف وجود دارد‏.

کلیدواژه‌ها

عنوان مقاله [English]

Study of optical properties of Ag ellipsoid nanostructures by discrete dipole approximation method

نویسندگان [English]

  • SAEED Ranjbar 1
  • Abbas Azarian 2

1 Department of Physics, University of Qom, Qom, Iran

2 Assistant Professor, Department of Physics, University of Qom, Qom, Iran

چکیده [English]

In this paper, we investigate optical properties of silver ellipsoid nanostructures (SENs) by means of discrete dipole approximation (DDA), when these nanoparticles are embedded into the water. Absorption, scattering and extinction cross-sections of the SENs were calculated by change of incident wavelength in visible and near infrared region. Moreover, height, wavelength and full width at half maximum (FWHM) of extinction cross-section peaks (due to plasmon resonances) were studied by change of nanostructure's size and dielectric constant of medium. Our results show that, there are only two peaks of transverse dipole and longitudinal dipole modes in this spectrum.

کلیدواژه‌ها [English]

  • Ag ellipsoid nanostructures
  • discrete dipole approximation
  • plasmon
  • cross-sections
  • V.Salata, “Applications of nanoparticles in biology and medicine,” J. Nanobiotechnology, (2004) vol. 2, no. 1, p. 3.
  • J. Murphy, A.M.Gole, J.W.Stone, P.N.Sisco, A.M.Alkilany, E.C.Goldsmith, and S.C.Baxt
  • O VSalata, Nanobiotechnology 4, 2 (2004) 3.
  • C J Murphy, A M Gole, J W Stone, P N Sisco, A M Alkilany, E C Goldsmith, and S C Baxter, Accounts Chem. Res., 41, 12 (2008) 1721.
  • M Homberger and U Simon, Trans. R. Soc. Math. Phys. Eng. Sci. 368, 1915 (2010) 1405.
  • J Conde, J Rosa, J C Lima, and P V Baptista, J. Photoenergy 2012 (2011) 619530.
  • M C Daniel and D Astruc, Rev. 104, 1 (2004) 293.
  • M A Yurkin and A G Hoekstra, Quant. Spectrosc. Radiat. Transf 106, 1 (2007) 558.
  • M A Yurkin and A G.Hoekstra, Quant. Spectrosc. Radiat. Transf. 112, 13 (2011) 2234.
  • P J Flatau and B T Draine, Opt Soc Am. 11 (1994) 1491.
  • B T Draine, P J Flatau, User Guide for the discrete dipole approximation code DDSCAT 2. (2012) <http://www.arxiv.org/abs/1202.3424>.
  • V L Loke, M P Mengüc, and T A Nieminen, Quant. Spectrosc. Radiat. Transf. 112, 11 (2011) 1711.
  • R Schmehl, B M Nebeker, and E D Hirleman, Josa, 14, 11 (1997) 3026.
  • I Ayrancı, R Vaillon, and N Selcuk, Quant. Spectrosc. Radiat. Transf. 103 1 (2007) 83.
  • A L González and C Noguez, Comput. Theor. Nanosci. 4, 2 (2007) 231.
  • C F Bohren and D R Huffman, “Absorption and Scattering of Light by Small Particles”, John Wiley & Sons.Inc., New York, (1983).
  • M Wahbeh. “Discrete-Dipole-Approximation (DDA) study of the plasmon resonance in single and coupled spherical silver nanoparticles in various configurations”, Concordia University (2011).
  • M Quinten, “Optical properties of nanoparticle systems: Mie and beyond”, John Wiley & Sons (2010).
  • A Moroz, Josa B 26 3 (2009) 517.
  • A Wokaun, J P Gordon, and P F Liao, Rev. Lett. 48, 14 (1982) 957.
  • er, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res., (2008)vol. 41, no. 12, pp. 1721–1730.
  • Homberger and U.Simon, “On the application potential of gold nanoparticles in nanoelectronics and biomedicine,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., (2010) vol. 368, no. 1915, pp. 1405–1453.
  • Conde, J.Rosa, J.C.Lima, and P.V.Baptista, “Nanophotonics for molecular diagnostics and therapy applications,” Int. J. Photoenergy, (2011) vol. 2012.
  • C.Daniel and D.Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev., (2004) vol. 104, no. 1, pp. 293–346.
  • A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J.Quant. Spectrosc. Radiat. Transf., (2007) vol. 106, no. 1, pp. 558–589.
  • A.Yurkin and A.G.Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf., (2011) vol. 112, no. 13, pp. 2234–2247.
  • J.Flatau and B.T.Draine, “Discrete-dipole approximation for scattering calculations,” J.Opt Soc Am, (1994) vol. 11, p. 1491.
  • T.Draine, P.J.Flatau, User Guide for the discrete dipole approximation code DDSCAT 7.2. (2012) <http://www.arxiv.org/abs/1202.3424>.
  • L.Loke, M.P.Mengüc, and T.A.Nieminen, “Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf., (2011) vol. 112, no. 11, pp. 1711–1725.
  • Schmehl, B.M.Nebeker, and E.D.Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” Josa, (1997) vol. 14, no. 11, pp. 3026–3036.
  • Ayrancı, R.Vaillon, and N.Selcuk, “Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles,” J. Quant. Spectrosc. Radiat. Transf., vol. 103, (2007) no. 1, pp. 83–101.
  • L.González and C.Noguez, “Influence of morphology on the optical properties of metal nanoparticles,” J. Comput. Theor. Nanosci., (2007) vol. 4, no. 2, pp. 231–238.
  • F.Bohren and D.R.Huffman, “Absorption and scattering by a sphere,” Absorpt. Scatt. Light Small Part., (1983) pp. 82–129.
  • Wahbeh. (2011). “Discrete-Dipole-Approximation (DDA) study of the plasmon resonance in single and coupled spherical silver nanoparticles in various configurations”.
  • Quinten, Optical properties of nanoparticle systems: Mie and beyond. (2010) John Wiley & Sons.
  • Moroz, “Depolarization field of spheroidal particles,” Josa B, (2009) vol. 26, no. 3, pp. 517–527.
  • Wokaun, J.P.Gordon, and P.F.Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett., (1982) vol. 48, no. 14, p. 957.