نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی فیزیک، دانشکده شیمی، پردیس علوم، دانشگاه تهران، تهران

چکیده

رویۀ انرژی پتانسیل یون سه اتمی ClO2 در حالت پایۀ الکترونی با محاسبات آغازین به روش خوشه‌ جفت ‌شده CCSD(T) محاسبه شده ‌است. محاسبات برای 1200 نقطه در رویۀ انرژی پتانسیل انجام شده و با برازش نقاط پتانسیل محاسبه شده در عبارت انرژی پتانسیل بر حسب مختصات درونی، ثابت‌های نیروی مرتبۀ دوم، سوم و چهارم تعیین شدند. با به‌ کارگیری نظریۀ اختلال مرتبۀ دوم ارتعاشی ‌چرخشی، بسامد‌های ارتعاشی هماهنگ، ثابت‌های ناهماهنگی ارتعاشی و تعدادی دیگر از ثابت‌های طیف‌سنجی برای این آنیون محاسبه شده‌ و بسامد‌های ارتعاشی بنیادی با صحت بالا تعیین شدند. همچنین، انرژی‌های 30 تراز ارتعاشی پایینی با در نظر گرفتن ثابتهای ناهماهنگی محاسبه شده اند‏.
 

کلیدواژه‌ها

عنوان مقاله [English]

Potential energy surface, quartic force fields and vibrational levels of chlorine dioxide anion

نویسندگان [English]

  • A Shayesteh
  • E Falatooni
  • M Motallebipour

School of Chemistry, College of Science, University of Tehran, Tehran, Iran

چکیده [English]

Potential energy surface was calculated for the ground electronic state of the triatomic ion ClO2 using the coupled-cluster method CCSD(T). Calculations were carried out for 1200 points on the potential energy surface, and the calculated points were fitted to the potential energy expression in terms of the internal coordinates, from which the quadratic, cubic and quartic force fields were determined. Using the second-order rovibrational perturbation theory, harmonic vibrational frequencies, anharmonicity constants and several other spectroscopic parameters were calculated, and accurate fundamental vibrational frequencies were obtained. Also, the energies of 30 lowest vibrational levels were calculated using the anharmonicity constants.
 

کلیدواژه‌ها [English]

  • potential energy surface
  • coupled cluster method
  • quartic force fields
  • vibrational anharmonicity
  1. M J Molina, FS Rowland, Nature 249 (1974) 810.
  2. W H Brune, J G Anderson, and K R Chan, Journal of Geophysical Research 94 (1989) 16649.
  3. S. Rowland, Annual Review of Physical Chemistry 42 (1991) 731.
  4. P. Wayne, “Chemistry of Atmospheres”, Clarendon, Oxford (1991).
  5. L T Molina and M J Molina, Journal of Physical Chemistry 91 (1987) 433.
  6. S P Sander, R R Friedl, and Y L Yung, Science 245 (1989) 1095.
  7. M B McElroy, R J Salawitch, S C Wofsy, and J A Logan, Nature 321 (1986) 759.
  8. J L Gole, Journal of Physical Chemistry 84 (1980) 1333.
  9. V Vaida, S Solomon, E C Richard, E Ruhl, and A Jefferson, Nature 342 (1989) 405.
  10. R F Curl Jr, J L Kinsey, J G Baker, J C Baird, G R Bird, R F Heiderberg, T M Sugden, D R Jenkins, and C N Kenney, Physical Review 121 (1961) 1119.
  11. R F Curl Jr, R F Heiderberg, and J L Kinsey, Physical Review 125 (1962) 1993.
  12. W M Tolles, J L Kinsey, R F Curl Jr, and R F Heiderberg, Journal of Chemical Physics 37 (1962) 927.
  13. M G Krishna Pillai, and R F Curl Jr, Journal of Chemical Physics 37 (1962) 2921.
  14. R P Mariella, and R F Curl Jr, Journal of Chemical Physics 52 (1970) 757.
  15. K Miyasaki, M Tanoura, K Tanaka, and T Tanaka, Journal of Molecular Spectroscopy 116 (1986) 435.
  16. K A Peterson, and H J Werner, Journal of Chemical Physics 96 (1992) 8948.
  17. K A Peterson, H J Werner, Journal of Chemical Physics 105 (1996) 9823.
  18. O B Teixeira, V C Mota, J M Garcia de la Vega, A J Varandas, Journal of Physical Chemistry A 118 (2014) 4851.
  19. D Wecker, A A Christodoulides, and R N Schindler, International Journal of Mass Spectrometry and Ion Physics 38 (1981) 391.
  20. V I Alekseev, L I Fedorova, and A V Baluev, Akad Nauk SSSR Bulletin of Chemical Science 32 (1983) 980.
  21. L M Babcock, T Pentecost, and W H Koppenol, Journal of Physical Chemistry 93 (1989) 8126.
  22. J R Byberg, Chemical Physics Letters 81 (1981) 156.
  23. M K Gilles, M L Polak, and W C Lineberger, Journal of Chemical Physics 96 (1992) 8012.
  24. E L Wagner, Journal of Chemical Physics 37 (1962) 751.
  25. V L Pershin and A I Boldyrev, Akad Nauk SSSR Bulletin of Chemical Science 36 (1987) 722.
  26. K A Peterson and H J Werner, Journal of Chemical Physics 99 (1993) 302.
  27. Z Z Wei, B T Li, H X Zhang, C C Sun, and K L Han, Journal of Computational Chemistry 28 (2006) 467.
  28. D Papousek and M R Aliev, “Molecular vibrational-rotational spectra: theory and applications of high resolution infrared, microwave and Raman spectroscopy of polyatomic molecules”, Elsevier (1982).
  29. F Neese, Computational Molecular Science 2 (2012) 73.
  30. A Willetts, J F Gaw, W H Green Jr., and N C Handy, “SPECTRO-a program for the derivation of spectroscopic constants from provided quartic force fields and cubic dipole fields, version 1.2”, Department of Chemistry, University of Cambridge, 2006.
  31. P F Bernath, “Spectra of atoms and molecules”, 3rd ed., Oxford (2016).
  32. A R Hoy, I M Mills, and G Strey, Molecular Physics 24 (1972) 1265.