نوع مقاله : مقاله مروری

نویسندگان

آزمایشگاه پژوهشی مواد فوتونیکی، دانشکده فیزیک، پردیس علوم، دانشگاه تهران

چکیده

از آنجایی که برای انجام درست هرکاری ابتدا باید دانش و شناخت کافی از آن موضوع پیدا کنیم، ما در بخش نخست این مقاله ابتدا به مرور بر روش‌های مهم و اصلی لیتوگرافی نوری و طبقه‌بندی آنها می‌پردازیم. سپس به معرفی راه‌های بهبود تصاویر ایجاد شده روی فتورزیست که بستر اصلی لیتوگرافی است پرداخته و لیتوگرافی با ذرات پر انرژی و لیتوگرافی نرم را بررسی می‌کنیم. در بخش دوم مقاله روش فتولیتوگرافی تماسی و فرایند بهبود آن که در آزمایشگاه ما انجام شده است، با جزئیات معرفی و شرح داده می‌شود. از این روش برای لیتوگرافی جهت ساخت قطعات اپتیکی پراشی روی یک بستر شیشه‌ایی آلاییده شده به نانوذرات نقره توسط یک باریکة یون هلیوم استفاده کردیم. جهت کاهش اثر پراش، ما روش تماسی را برای کار خود سازگاز و بهینه‌سازی کردیم. راهکار ما که در این مقاله ارائه شده است برای سایر پژوهشگران در ایران عملی و در دسترس است

کلیدواژه‌ها

عنوان مقاله [English]

An introduction to lithography methods and providing a practical method for its optimization

نویسندگان [English]

  • Arashmid Nahal
  • Seyed Reza Hosseini

Photonic Materials Research Laboratory, Department of Physics, College of Science, University of Tehran, Tehran, Iran

چکیده [English]

In the first part of the present article, the important and main methods of photolithography are reviewed and discussed. Then we introduce the ways to improve the images created on the photoresist, which is the main material of lithography. Lithography with high-energy particle and soft lithography are then described. In the second part, the contact-photolithography method and its improvement process, which we use in our laboratory, are introduced and described in detail. We used this method for lithography to make diffraction optical elements on a glass substrate, doped by silver nanoparticles, using a helium ion beam. Light diffraction from the created lithography masks prevents access to very small images. To reduce the diffraction influence on the quality of the produced elements, we adapted and optimized the contact-lithography method for our project. Our solution, presented in this article, is practical and available for other researchers in Iran

کلیدواژه‌ها [English]

  • lithography
  • light-sensitive materials
  • photoresist
  1. M J Madou “Fundamentals of microfabrication and nanotechnology. Manufacturing techniques for microfabrication and nanotechnology”. 3rd Edition, Vol. 2. CRC Press (2011).

  2. K T Tran and T D Nguyen, Journal of Science: Advanced Materials and Devices 2, 1 (2017) 1.

  3. J Vinje, K S Beckwith, and P Sikorski, Journal of Microelectromechanical Systems 29, 2 (2020) 160.

  4. J E E Baglin, Applied Surface Science 258, 9 (2012) 4103.

  5. S Y Chou, P R Krauss, and P J Renstrom, Science 272, 5258 (1996) 85.

  6. M C Peckerar and J R Maldonado, Proceedings of the IEEE 81, 9 (1993) 1249.

  7. C Luo, et al., RSC Advances 10, 14 (2020) 8385.

  8. S Trivedi and H B Nemade, Sensors and Actuators B: Chemical 273 (2018) 288.

  9. A Del campo and C Greiner 17, 6 (2007) R81.

  10. J M Shaw, et al., IBM journal of Research and Development 41, 1-2 (1997) 81.

  11. D J Carbaugh, et al., Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35, 4 (2017) 041602.

  12. S M Sze and M K Lee “Semiconductor devices: physics and technology”, 3rd John Wiley and sons (2012).

  13. D Qin, et al., Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16, 1 (1998) 98.

  14. V Iberi, et al., Scientific reports 5, 1 (2015) 1.

  15. M Saedi, et al., Applied Surface Science 507 (2020) 144951.

  16. C A Mack “Field guide to optical lithography”, Vol 6 Bellingham, WA: SPIE Press (2006).

  17. T Weichelt, et al., Optics Express 22, 13 (2014) 16310.

  18. A N Boto, et al., Physical Review Letters 85,13 (2000) 2733.

  19. A B Kahng, et al., IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 29, 6 (2010) 939.

  20. P Yu, S X Shi, and D Z Pan, Journal of Micro/Nanolithography, MEMS, and MOEMS 6, 3 (2007) 031004.

  21. A Gu,and A Zakhor, IEEE Transactions on Semiconductor Manufacturing 21, 2 (2008) 263.

  22. A D Beyer, et al., IEEE Transactions on Applied Superconductivity 25, 3 (2014) 1.

  23. V Mico, Z Zalevsky, and J García, Optics communications 276, 2 (2007) 209.

  24. M D Levenson, N S Viswanathan, and R A Simpson, IEEE Transactions on electron devices 29, 12 (1982) 1828.

  25. K G Winkels, et al., The European Physical Journal Special Topics, 192(1) (2011) 195.

  26. M Lysaght, et al., Physical Review A 72, 1 (2005) 014502.

  27. J Suzuki, et al., Journal of Photopolymer Science and Technology 30, 6 (2017) 671.

  28. N Mojarad, J Gobrecht, and Y Ekinci, Scientific reports 5, 1 (2015) 1.

  29. H Ito and C G Willson, Polymer Engineering and Science 23, 18 (1983) 1012.

  30. C T Lee, “Development and advanced characterization of novel chemically amplified resists for next-generation lithography”, Thesis for the Ph.D. Degree, Georgia Institute of Technology, School of Chemical and Biomolecular Engineering (2008).

  31. E Reichmanis, et al., Polymer International 48, 10 (1999) 1053.

  32. M Krysak, et al., In Advances in Resist Materials and Processing Technology XXVIII 7972 (2011) 79721C.

  33. S Ghosh, et al., RSC advances 6, 78 (2016) 74462.

  34. D De Simone, Y Vesters, and G Vandenberghe, Advanced Optical Technologies 6, 3-4 (2017) 163

  35. H Ghasem, F Saeidi, and E Ahmadi, Journal of Instrumentation 8, 02 (2013) 02023.

  36. A Heuberger, Journal of Vacuum Science and Technology B: Microelectronics Processing and Phenomena 6, 1 (1988) 107.

  37. J M Park, et al., Materials 12, 13 (2019) 2056.

  38. K Kise, et al., Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1 (2004) 126.

  39. M Farhoud, et al., Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 17, 6 (1999) 3182.

  40. Y Shimizu, Nanomanufacturing and Metrology 4 (2021) 3.

  41. D Weber, et al., Applied Physics A 125, 5 (2019) 1.

  42. R Sidharthan, F Chollet, and V M Murukeshan, Laser Physics 19, 3 (2009) 505.

  43. E Buitrago, et al., Microelectronic Engineering 155 (2016) 44.

  44. E M Park, et al., Thin Solid Films 519, 13 (2011) 4220.

  45. A E Grigorescu and C W Hagen, Nanotechnology 20, 29 (2009) 292001.

  46. C Vieu, et al., Applied surface science 164, 1-4 (2000) 111.

  47. S Reyntjens and R Puers, Journal of Micromechanics and Microengineering 11, 4 (2001) 287.

  48. J Zhang, C Con, and B Cui, ACS Nano 8, 4 (2014) 3483.

  49. P R Munroe, Materials Characterization 60, 1 (2009) 2.

  50. C A Volkert, and A M Minor, MRS Bulletin 32, 5 (2007) 389.

  51. M I Current, Materials Science in Semiconductor Processing 62 (2017) 13.

  52. M Horák, et al., Scientific Reports 8, 1 (2018) 1.

  53. O Dial, C C Cheng, and A Scherer, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16, 6 (1998) 3887.

  54. F Watt, et al., International Journal of Nanoscience 4, 03 (2005) 269.

  55. S Chou, Y P R Krauss, and P J Renstrom, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14, 16 (1996) 4129.

  56. U Plachetka, et al., Microelectronic Engineering 73 (2004) 167.

  57. Y Xia and G M Whitesides, Annual Review of Materials Science 28, 1 (1998) 153.

  58. T A Kumar, et al., Nano letters 10, 6 (2010) 2262.

  59. S T Howell, et al., Microsystems and Nanoengineering 6, 1 (2020) 1.

  60. Y K Ryu and R Garcia, Nanotechnology 28(14) (2017) 142003

  61. Y Wang, et al., Nano Today 22 (2018) 36.

  62. C Wang, et al., Micromachines 7, 7 (2016) 118.

  63. X Niu, et al., Microelectronic engineering 87, 5-8 (2010) 1168.

  64. Y K Yoon, J H Park, and M G Allen, Journal of microelectromechanical systems 15, 5 (2006) 1121.

  65. C M Waits, et al., Sensors and Actuators A: Physical 119, 1 (2005) 245.

  66. I Bernardeschi, M Ilyas, and L Beccai, Advanced Intelligent Systems 3 (2021) 2100051.

  67. G Seniutinas, et al., Microelectronic Engineering 191 (2018) 25

  68. R R Schaller, IEEE Spectrum 34, 6 (1997) 52.

  69. T S Kulmala, et al., Journal of Micro/Nanolithography, MEMS, and MOEMS 14, 3 (2015) 033507.

  70. T Tamulevičius, et al., Experimental Techniques 32, 4 (2008) 23.

  71. C J Ting, C F Chen, and C P Chou, Optics Communications 282, 3 (2009) 434.

  72. Y Chen, Microelectronic Engineering 135 (2015) 57.

  73. A N Abbas, et al., ACS nano 8, 2 (2014) 1538.

  74. A Rashidian, et al., Journal of Micromechanics and Microengineering 20, 2 (2010) 025026.

  75. A Nahal, M Mahjour-Shafiei, and S R Hosseini, Journal of Materials Science: Materials in Electronics 31 (2020) 5499.

  76. A Nahal, S R Hosseini, and M Mahjour-Shafiei, Journal of Materials Science: Materials in Electronics 32, 18 (2021) 23349.

  77. D M Mattox, “Film Formation, Adhesion, Surface Preparation, and Contamination Control, Handbook of physical vapor deposition (PVD) processing”, 2nd Edition, Noyes Publications, Westwood, New Jersey, USA (1998).

  78. V I Egorkin, et al., Russian Microelectronics 46, 4 (2017) 272.

  79. P Walker and W H Tarn, (Eds.), “CRC Handbook of Metal Etchants”, CRC Press (1990).

تحت نظارت وف ایرانی