نوع مقاله : مقاله پژوهشی
نویسندگان
دانشکده علوم پایه،گروه فیزیک دانشگاه جامع امام حسین (ع)، تهران
چکیده
هدایتگرها نقش اساسی در تمرکز باریکۀ نوترونی و افزایش شار، برای یک سامانۀ هدایت نوترون دارند. در این پژوهش، به بررسی نقش پارامترهای شعاع انحناء و طول، بر شدت نوترون روی نمونه، برای هدایتگر S- مانند پرداخته شده و نتایج حاصل از آن برای سه نوع هندسۀ متفاوت مورد تجزیه و تحلیل قرار گرفته است. در این کار، از روش شبیهسازی مونتکارلو با نرمافزار McStasاستفاده شده است. نتایج نشان میدهد در یک شعاع ثابت با افزایش طول، هدایتگر به سمت خمش بیشتر پیش میرود و نوترونهای با انرژی کمتر را از خود عبور میدهد و بر عکس در یک طول ثابت با افزایش شعاع، هدایتگر کمکم از حالت خمیده خارج و به سمت هدایتگر مستقیم میل میکند و همه محدودة طیف انرژی نوترون را عبور میدهد. شعاع انحناء 70 متر و طول 4 متر به دلیل عبور دادن محدودة بیشتری از شار نوترونهای حرارتی برای هدایتگر S- مانند انتخاب شد. شعاع هدایتگر میتواند منجر به یک طول موج قطع برای نوترونها شود. همچنین این هدایتگر میتواند موجب حذف نوترونهای سریع و پرتوهای گاما میشود. .
کلیدواژهها
عنوان مقاله [English]
Investigating the role of S-shape guide in neutron guidance system with 241Am-Be source
نویسندگان [English]
- Esmaeil Tayebfard
- Mohsen Shayesteh
- Ruhollah Razavinezhad
- Mahdi Eshgi
Department of Physics, Imam Hossein Comprehensive University, Tehran, Iran
چکیده [English]
Guides play a key role in concentrating the neutron beam and increasing the flux for a neutron guide system. In this research, the role of a radius of curvature and length parameters on neutron intensity on the sample for the S-shape guide has been investigated and the results have been analyzed for three different types of geometry. In this work, the Monte Carlo simulation method is used with McStas software. The results show that at a constant radius with increasing length, the guide moves more towards bending and passes neutrons with less energy. Conversely, at a constant length with increasing radius, the guide gradually deviates from the curved state and it leads directly to the straight guide, all of the neutron energy spectra passes. A radius of curvature of 70 m and a length of 4 m were chosen for the S-shaped guide due to the passage of a larger range of thermal neutron fluxes. The guide radius can lead to a cut-off wavelength for neutrons. This guide can also eliminate fast neutrons and gamma rays..
کلیدواژهها [English]
- guides
- beam neutron
- McStas software
- V T Em, et al., Instruments and Experimental Techniques 60, 4 (2017) 526.
- M Adib, et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 347 (2015) 58.
- K Z Lin, and V G Syromyatnikov, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 10, 4 (2016) 687.
- M Adib, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 747 (2014) 87.
- C P Cooper-Jensen, et al., Journal of Physics: Conference Series 528, 1 (2014) 012005.
- F Cousin, and A Menelle, EPJ Web of Conferences 104 (2015) 01005.
- J Jackson Andrew, NIST Center for Neutron Research (2008) 1-24.
- R Pynn, Los Alamos Neutron Science Center, Los Alamos Science (1989).
- R Pynn, "Neutron scattering—a non-destructive microscope for seeing inside matter", In Neutron applications in earth, energy and environmental sciences, Springer, Boston, MA., (2009).
- A P Souza, et al., Journal of Instrumentation 15, 4 (2020) P04011.
- D F R Mildner, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 290, 1 (1990) 189.
- K Ikeuchi, et al., Journal of the Physical Society of Japan 82 (2013) SA038.
- A Houben, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 680 (2012) 124.
- S Holm-Dahlin, et al., Quantum Beam Science 3, 3 (2019) 16.
- http://www.mcstas.org.
- K H Klen, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 696 (2012) 75.
- K Lefmann, “Niels Bohr Institute”, University of Copenhagen (2007) 1.
- D M Rodriguez, D D DiJulio, and P M Bentley, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 808 (2016) 101.
- Y Wang, et al., Physics Procedia, 88 (2017) 354.
- H Jacobsen, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 717 (2013) 69.
- C Zendler, D Nekrassov and K Lieutenant, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 746 (2014) 39.
- P Böni, In. Journal of Physics: Conference Series, 502, 1 (2014) 012047.
- A Hilger, et al. Optics express 23, 1 (2015) 301.
- K Lieutenant, and L D ussen, Journal of Neutron Research 18, 4 (2015) 127.
- P Cheng, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 821 (2016) 17.
- T C Huang, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 669 (2012) 14.
- L P de Oliveira, et al., Journal of Instrumentation 15, 01 (2020) P01012.
- https://indico.frm2.tum.de/event/51/contributions/859/attachments/162/209/IAEA_AUNIRA_Summer_School_Schillinger-Instrumentation_for_Neutron_Imaging.pdf.
- B Schillinger, Nondestructive Testing and Evaluation 16, 2-6 (2001) 141.
- A P Souza, et al., Journal of Instrumentation 15, 04 (2020) P04011.
- S Kennedy, R Robert and H Brett, JAERI-Conf (2001) JP0150507.
- D C Evans,"HFIR Thermal Neutron Beam Guide Hall Upgrade", (1997)1-94 Chancellor’s Honors Program Projects, https://trace.tennessee.edu /utk_chanhonoproj /212.
- O Kirstein, et al., In. Materials Science Forum 571 (2008) 213.
- E Farhi and P Willendrup, École thématique de la Société Française de la Neutronique 12 (2011) 303.