نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکدۀ فیزیک، دانشگاه کاشان

2 دانشکدۀ فیزیک، دانشگاه صنعتی شاهرود

3 دانشکدة فیزیک، دانشگاه کاشان

چکیده

در یک مادۀ تراکم‌پذیر کوانتومی مد صوتی را با استفاده از هولوگرافی حساب می‌کنیم. به این منظور ساختاری از شامه‌های D3 - D7 را در نظر می‌گیریم که متناظر با این مادة تراکم‌پذیر باشد. در این سامانه، مد صوتی را مدصوتی صفرم هولوگرافی می‌نامند. در حضور هندسۀ زمینۀ گرانشی گوس - بونت تصحیحات وارد برصوت صفرم را محاسبه کرده و نشان می‌دهیم که نرخ میرایی کاهش می‌یابد

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Study of corrections on the holographic zero sound

نویسندگان [English]

  • Seyed Mohammad Reza Mirabbasi 1
  • Kazem Bitaghsir Fadafan 2
  • Majid Monem Zadeh 3

1 Department of Physics University of Kashan, Kashan, Iran

2 Faculty of Physics, Shahrood University of Technology, Shahrood, Iran

3 Department of Physics University of Kashan, Kashan, Iran

چکیده [English]

In a holographic compressible quantum matter, we calculate the sound mode using holography. For this purpose, we consider a structure of D3-D7 branes that corresponds to this holographic compressible quantum matter. In this system, the sound mode is called the zero sound mode. In Gauss-Bonnet gravitational field geometry, we calculate the corrections entered at zero sound and show that the attenuation rate decreases.
 

کلیدواژه‌ها [English]

  • AdS/CFT correspondence
  • holography
  • branes
  • zero sound
  • Gauss
  • Bonnet
  1. J M Maldacena, Theor. Math. Phys. 2 (1998) 231.
  2. S S Gubser, I R Klebanov, and A M Polyakov, Lett. B4 28 (1998) 105.
  3. E Witten, Theor. Math. Phys. 2 (1998) 253.
  4. E Biglar and F Loran, J. Phys. Res. 4 (2006) 179 (Persian).
  5. J Casalderrey-Solana, et al., “Gauge/String Duality, Hot QCD and Heavy Ion Collisions”, Cambridge University Press, (2014).
  6. J Zaanen, et al. “Holographic Duality in Condensed Matter Physics”, Cambridge University Press, (2015)..
  7. K Bitaghsir Fadafan and S Mojarad Laman jouee. J. Phys. Res. 2 (2018) 190 (Persian).
  8. K Bitaghsir Fadafan, Iran. J. Phys. Res. 3 (2019) 51 (Persian).
  9. S Parvizi and M Sadeghi. J. Phys. Res. 1 (2020) 139 (Persian).
  10. S Sachdev, Rev. Condensed Matter Phys. 3 (2012) 9.
  11. S A Hartnoll, A Lucas and S Sachdev, [arXiv:1612.07324].
  12. A Sean. Quant. Grav. 26 (2009) 224002.
  13. J McGreevy, High Energy Phys. (2010) 723105.
  14. G Policastro, D T Son and A O Starinets, Rev. Lett. 87 (2001) 081601.
  15. P Kovtun, D T Son and A O Starinets, JHEP 10 (2003) 064.
  16. A Buchel and J T Liu, Rev. Lett. 93 (2004) 090602.
  17. P Kovtun, D T Son and A O Starinets, Rev. Lett. 94 (2005) 111601.
  18. A Adams, et al. New J. Phys. 14 (2012) 115009.
  19. L Landau, Eksp. Teor. Fiz. 32 (1957) 59 [Sov. Phys. JETP 5 (1957) 101].
  20. W R Abel, A C Anderson and J C Wheatley, Rev. Lett. 17 (1966) 74.
  21. D Pines and P Nozieres, “The Theory of Quantum Liquids”, vol. 1. W.A. Benjamin, Inc. NewYork City, 1 ed., (1966).
  22. A Karch, D T Son and A O Starinets, Zero Sound from Holography”, [arXiv:0806.3796].
  23. M Kulaxizi and A Parnachev, Rev. D 78 (2008) 086004.
  24. D Nickel and D T Son, New J. Phys. 13 (2011) 075010.
  25. R A Davison and A O Starinets, Rev. D 85 (2012) 026004.
  26. C P Herzog, Rev. D 68 (2003) 024013.
  27. C Hoyos-Badajoz, A O’Bannon, and J M S Wu, JHEP 09 (2010) 086.
  28. B H Lee, D W Pang and C Park, JHEP 11(2010) 120.
  29. P Dey and S Roy, Rev. D 88 (2013) 046010.
  30. B S DiNunno, et al., JHEP 04 (2014) 149.
  31. C F Chen and A Lucas, Lett. B 774 (2017) 569.
  32. X O Camanho and J D Edelstein, JHEP 1004 (2010) 007.
  33. M Brigante, et al., Rev. Lett. 100 (2008) 191601.
  34. K B Fadafan and S K Tabatabaei, Phys. J. C 74 (2014) 2842.
  35. M Atashi, K Bitaghsir Fadafan, [arXiv:1906.11621v1 [hep-th] 13 Jun 2019]
  36. R G Cai, Rev. D 65 (2002) 084014.
  37. Richard A. Davison and Blaise Goutéraux. JHEP 1501 (2015) 039
  38. M Baggioli, et al., Rept. 865 (2020) 1.

 

 

تحت نظارت وف ایرانی