نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک، دانشگاه تبریز، تبریز ۱۶۴۷۱-۵۱۶۶۶، ایران

2 گروه فیزیک، دانشگاه شهید مدنی آذربایجان، تبریز ۱۶۱-۵۳۷۱۴، ایران

چکیده

سیاه­چاله­‌ها به عنوان یکی از پیش­بینی­‌های نسبیت عام، دچار مشکل تکینگی هستند. رویکردهای مختلفی برای حل این مشکل وجود دارد، که سیاه­چالۀ اینشتین-گوس-بونت در چهار‌بعد یکی از آنهاست. نداشتن تابش الکترومغناطیسی، مشاهدۀ سیاه‌چاله­‌ها را دشوار کرده است. اینجاست که نقش کلیدی قرص‌­های برافزایشی اطراف سیاه­چاله­ها به عنوان تنها منبع تابش الکترومغناطیسی آنها آشکار می­شود. مطالعه و رصد قرص­‌های برافزایشی اطراف سیاه­چاله‌­ها، در درک بهتر سیاه­چاله­‌ها و تأثیرات آنها بر فضا-زمان اطراف مؤثر خواهد بود. از این‌رو در این مقاله، قرص‌­های برافزایشی نازک استاندارد اطراف سیاه­چاله‌­های اینشتین-گوس-بونت در چهار‌بعد را مورد مطالعه قرار داده­‌ایم. ما انرژی تابشی، مشتق درخشندگی، دما و بازده تبدیل جرم برافزایشی به تابش را به دست آورده و با سیاه­چالۀ شوارتزشیلد مقایسه کرده‌­ایم. نتایج به دست آمده نشان می‌­دهند که بازده تبدیل جرم برافزایشی به تابش توسط سیاه­چالۀ چهار‌بعدی اینشتین-گوس-بونت بیشتر از سیاه­چاله­‌های شوراتزشیلد است. همچنین سیاه­چاله چهار‌بعدی اینشتین-گوس-بونت در مقایسه با حالت کلاسیکی انرژی بیشتری از خود ساطع می­‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Accretion Disk Dynamics in the Vicinity of a Four-Dimensional Einstein-Gauss-Bonnet Black Hole

نویسندگان [English]

  • Minou Khoshragbaf 1
  • Amin Rezaei Akbarieh 1
  • Mohammad Atazadeh 2

1 Faculty of Physics, University of Tabriz, Tabriz 51666-16471, Iran

2 Department of Physics, Azarbaijan Shahid Madani University, Tabriz, 53714-161 Iran

چکیده [English]

As one of the predictions of general relativity, black holes have the problem of singularity. There are various approaches to solving this problem, and Einstein-Gauss-Bonnet (EGB) black hole in four dimensions is one of them. The lack of electromagnetic radiation makes black holes difficult to observe. This is where the key role of accretion disks around black holes is revealed as the sole source of their electromagnetic radiation. Studying and observing accretion disks around black holes will be effective in better understanding black holes and their effects on the surrounding space-time. Therefore, in this article, we have studied standard thin accretion disks around EGB black holes in four dimensions. We have obtained the radiant energy, derivative of luminosity, temperature, and conversion efficiency of accretion mass to radiation and compared it with Schwarzschild's black hole. The results show that the conversion efficiency of accretion mass to radiation by four-dimensional EGB black holes is higher than that of Schwarzschild black holes. Also, the four-dimensional EGB black hole emits more energy than the classical Schwarzschild black hole.

کلیدواژه‌ها [English]

  • black hole
  • Gauss-Bonnet
  • accretion disk
  • Schwarzschild
  1. Y F Cai and D A Easson, JCAP 09 (2010), 002.
  2. B P Abbott, et al., Rev. D 93, 11 (2016) 112004.
  3. V I Pustovoit, Usp. 59, 10 (2016) 1034.
  4. S Doeleman, et al. Nature 455, 78 (2008), 78.
  5. M Wielgus, et al., J. Lett. 930, 2 (2022) L19.
  6. A E Broderick, et al., J. Lett. 930, 2 (2022) L21.
  7. J Farah, et al., J. Lett. 930, 2 (2022) L18.
  8. K Akiyama, et al., J. Lett. 930, 2 (2022) L17.
  9. K Akiyama, et al., J. Lett. 930, 2 (2022) L16.
  10. K Akiyama, et al., J. Lett. 930, 2 (2022) L15.
  11. K Akiyama, et al., J. Lett. 930, 2 (2022) L14.
  12. K Akiyama, et al., J. Lett. 930, 2 (2022) L13.
  13. K Akiyama, et al., J. Lett. 930, 2 (2022) L12.
  14. K Akiyama, et al., J. Lett. 875, 1 (2019) L6.
  15. K Akiyama, et al., J. Lett. 875, 1 (2019) L5.
  16. K Akiyama, et al., J. Lett. 875, 1 (2019) L4.
  17. K Akiyama, et al., J. Lett. 875, 1 (2019) L3.
  18. K Akiyama, et al., J. Lett. 875, 1 (2019) L2.
  19. K Akiyama, et al., J. Lett. 875 (2019), L1.
  20. K Pounds, et al., Not. Roy. Astron. Soc. 481, 2 (2018) 1832.
  21. R A Remillard and J E McClintock, Rev. Astron. Astrophys. 44 (2006) 49.
  22. B L Webster and P Murdin, Nature 235 (1972) 37.
  23. P Frolov, Quant. Grav. 30 (2013), 199001.
  24. S W Hawking and G F R Ellis, ‟The Large Scale Structure of Spacetime”, Cambridge University Press, Cambridge (1973).
  25. D Glavan and C Lin, Rev. Lett. 124, 8 (2020) 081301.
  26. C Liu, T Zhu and Q Wu, Phys. C 45, 1 (2021) 015105.
  27. H Lu and Y Pang, Lett. B 809 (2020) 135717.
  28. T Kobayashi, jkap 07 (2020)
  29. R  A Hennigar, D  Kubizňák, R  B  Mann, and C  Pollack, JHEP 07 (2020) 027.
  30. P G S Fernandes, P Carrilho, T Clifton, and D J Mulryne, Rev. D 102 (2020) 024025.
  31. M Heydari‑Fard, M Heydari‑Fard, and H R Sepangi,  Phys. J. C80 (2020) 351.
  32. T Harko, Z Kovács, and F S N Lobo, Rev. D79 (2009) 064001.
  33. S Chen, and J Jing, Let. B 704 (2011) 641.
  34. S Chen, and J Jing, Let. B 711 (2012) 81.
  35. C Liu, C Ding, and J Jing, Rev. D 101 (2020) 084040.
  36. M A Abramowicz and P Chris Fragile, Living Rev. Relativ. 16 (2013) 1.
  37. S Faraji and E Hackmann, Rev. D 101 (2020) 023002.
  38. P Joshi, D Malafarina, and R Narayan, Quantum Grav. 31 (2014) 015002.
  39. Z Kovcs and T Harko, Rev. D 82 (2010) 124047.
  40. D F Torres, Phys. B 626 (2002) 377.
  41. V L Fish, et al., Galaxies 4, 54 (2016).
  42. T Mller and J Frauendiener, J. Phys. 33 (2012) 955.
  43. C Liu, et al., Rev. D 101 (2020) 084001.
  44. A Chowdhury, et al,. Rev. D 85 (2012) 104031.
  45. Z Kovcs, K S Cheng, and T Harko, Astrophys. 500 (2009) 621.
  46. T Harko, Z Kovcs, and F S N. Lobo, Quantum Grav. 26 (2009) 215006.
  47. B Dˇanilˇa, T Harko, and Z Kovcs, Phys. J. C 75 (2015) 203.
  48. C S J Pun, Z Kovcs, and T Harko, Rev. D 78 (2008) 024043.
  49. D P´erez, G E Romero, and S E Perez Bergliaffa, Astrophys. 551 (2013) A4.
  50. G Gyulchev, et al., Rev. D 100 (2019) 024055.
  51. T Harko, Z Kovcs, and F S N Lobo, Quantum Grav. 28 (2011) 165001.
  52. M Heydari-Fard, Quantum Grav. 27 (2010) 235004.
  53. T Harko, Z Kovcs, and F S. N Lobo, Quantum Grav. 27 (2010) 105010.
  54. D P´erez, F G Lopez Armengol, and G E Romero, Rev. D 95 (2017) 104047.
  55. R Karimov, Phys. Rev. D 107 (2023) 064015.
  56. G Lodato, “Self-gravitating accretion discs,” Nuovo Cimento Rivista Serie 30 (2007) 293.
  57. I Banerjee, S Chakraborty, and S SenGupta, Rev. D 96, 8 (2017) 8.
  58. I Banerjee, S Chakraborty, and S SenGupta, Rev. D 100 (2019) 044045.
  59. M U Farooq, et al., Phys. C 44 (2020) 065102.
  60. A K Ahmed1, U Camci, and M Jamil, Quantum Grav. 33 (2016) 215012.
  61. A K Ahmed, et al., Phys. J. C 76 (2016) 280.
  62. P G Fernandes, et al. Class. Quantum Grav. 39, 6 (2022) 063001.
  63. M Guo and P C Li, Phys. J. C 80, 6 (2020) 588.
  64. M P Hobson, G P Efstathiou and A N Lasenby, ‟Generalrelativity: an introduction for physicists” (2008).
  65. T Harko, Z Kovacs and F. S N Lobo, Rev.D 79 (2009), 064001.
  66. Z Kovacs and T Harko, Rev. D 82 (2010), 124047.
  67. D Perez, G E Romero and S E P Bergliaffa, Astrophys. 551 (2013), A4.
  68. D Pérez, F G Lopez Armengol and G E Romero, Rev. D 95, 10 (2017) 104047.
  69. F H Zuluaga and L A Sánchez, Eur. Phys. J. C 81, 9 (2021) 840.
  70. D Novikov and K S. Thorne, Black holes (Les astres occlus) 1 (1973) 343.
  71. D N Page and K S Thorne, J. 191 (1974), 499.
  72. N I Shakura and R A Sunyaev, Astrophys. 24 (1973), 337.
  73. D Lynden-Bell and J E. Pringle, Not. Roy.Astron. Soc. 168 (1974), 603.
  74. F Liu and E Qiao, [arXiv:2201.06198 [astro-ph.HE]].
  75. P S Joshi, D Malafarina and R Narayan, Quant. Grav. 31 (2014) 015002.
  76. L Bombelli, et al., Rev. Lett. 60 (1988), 656.
  77. C S Reynolds and P J Armitage, J. Lett. 561 (2001), L81.

ارتقاء امنیت وب با وف بومی