نوع مقاله : مقاله پژوهشی
نویسندگان
1 ، گروه فیزیک، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
2 گروه فیزیک، دابشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
3 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
چکیده
حلِّ شوارتس- شیلد در 1916 به عنوان نخستین حلِّ معادلههای میدان اینشتین بر اساس تقارن کروی بهدست آمد که در زمان خود ایدۀ جدیدی در استفاده از تقارن محسوب میشد. در این مطالعه، سعی میشود حلهای معادلههای اینشتین با تقارن کروی در حضور و غیاب ثابت کیهانشناسی بر اساس ناوَرداهایِ (یا انتگرالهای اول) گروههای تقارنی مجدداً فرمولبندی شوند. روش مورد استفاده در این مقاله، ترکیبی از چهار تقارن شناخته شده: تقارن نقطهای لی، تقارن- ، چندجملهایهای داربُو و روش پِرل- سینگر گسترشیافته است. در این روش، برای حلِّ مجدد مسئلۀ شوارتسشیلد ترکیبی از تقارنهای ذکر شده بهنحوی استفاده میشود که ناورداهای مستقل از هم با یک شیوۀ نظاممند و الگوریتمی بهدست آیند. بر این اساس، یک نظریۀ تقارنی برای ما فراهم میشود. بهکمک این نظریه، بهدور از هر سردرگمی میتوان به بهترین نحو ممکن از تقارنها استفاده کرد و با راهکار مشخصی به جوابهای مورد نظر که همانا یافتن ناورداهای مستقل از هم است، دست یافت.
کلیدواژهها
- متریک شوارتسشیلد
- ناوَرداهایِ گروههای تقارنی
- تقارن نقطهای لی
- تقارن-λ
- چندجملهایهای داربُو
- روش پِرل- سینگر گسترشیافته
موضوعات
عنوان مقاله [English]
Spherical symmetry solutions of Einstein's equations via invariants of symmetry groups
نویسندگان [English]
- Ismael Ahmadi-Azar 1
- Mohammad Atazadeh 2
- Ali Eghbali 3
1 Department of Physics, Faculty of Basic Sciences,, Azarbaijan Shahid Madani University, Tabriz,, Iran
2 Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
3 Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]
The Schwarzschild solution was obtained in 1916 as the first solution to Einstein’s field equations based on spherical symmetry, which was considered a new idea in the use of symmetry at the time. In this study, it is tried to reformulate the solutions of Einstein’s field equations with spherical symmetry in both the presence and absence of the cosmological constant based on the invariants (or first integrals) of the symmetry groups. The method used in this article is a combination of four well-known symmetries: Lie point symmetry, λ-symmetry, Darboux polynomials, and the extended Prelle-Singer method. In this method, to resolve the Schwarzschild problem, a combination of the mentioned symmetries is used in such a way that the independent invariants are obtained in a systematic and algorithmic way. Based on this, a symmetry theory is provided for us. With the help of this theory, one can use symmetries in the best possible way, far from any confusion, and achieve the desired solutions with a specific solution, which is to find independent invariants.
کلیدواژهها [English]
- Lie point symmetry
- Darboux polynomials
- F Oliveri, Symmetry 2 (2010) 658.
- M M Schiffer and L Bowden, ‟The Role of Mathematics in Science”, Washington: The Mathematical Association of America (1984).
- J V Narlikar, ‟An Introduction to Relativity”, Cambridge: Cambridge University Press (2010).
- S Lie, “Zur Theorie des Integrabilitsfaktors”, Christian Forth 242-254, reprint in [14c], vol. III, no. XIII,(1874) 176.
- G Birkhoff, ‟Hydrodynamics: A study in Logic, Fac and Similitude”, Princeton: Princeton University Press (1950).
- L I Sedov, ‟Similarity and Dimensional Methods in Mechanics”, New York: Academic (2018).
- H Stephani, ‟Differential equations: their Solution using symmetries”, Cambridge: Cambridge university Press (1989).
- N H Ibragimov, ‟Elementary Lie Group Analysis and Ordinary Differential Equations”, Chichester: John Wiley (1999).
- Y Kosmann-Schwarzbach, ‟The Noether Theorems: Invariance and Conservation Law in the Twentieth Century”, New York: Springer (2012).
- H Stephani, et al., ‟Exact Solutions of Einstein’s Field Equations”, Cambridge: Cambridge University Press (2009).
- H B Zhang and L Q Chen, Phys. Soc. Jpn. 74, 3 (2005) 905.
- A Cohen, ‟An introduction to the Lie Theory of One-Parameter Groups”, New York: Stechert (1931).
- P J Olver, ‟Application of Lie groups to differ- ential equations”, 107, New York: Springer (1989).
- G W Bluman and S Komei, ‟Symmetries and Differential Equations”, New York: Springer (1989).
- M lutzky, Lett. B 72, 2 (1979) 86.
- J L Fu and L Q Chen, Lett. A 317 (2003) 255.
- S A Hojman, Phys. A: Math. Gen. 25, 7 (1992) L291.
- R Abraham and J E Marsden, ‟Foundations of Mechanics”, Providence: American Mathematical Society (2008).
- D E Neuenschwander, ‟Emmy Noether’s Wonderful Theorem”, Baltimore: John Hopkins Univer- sity Press (2011).
- H Rund, Math. 2 (1972) 205.
- A Trautman, Math. Phys. 6, 4 (1967) 248.
- K Sundermeyer, ‟Symmetries in Fundamental Physics”, New York: Springer (2014).
- R Leone, “On the Wonderfulness of Noether’s theorems, 100 years later, and Routh reduction”, (2018). Available: https://hal. Unv-Lorraine. Fr/hal-01758290v2.
- E Ahmadi-Azar, K Atazadeh, and A Eghbali, Scr. 99(2024)055014. doi: 10.1088/1402-4896/ad37e2. arXiv: preprint arXiv 2310.19772v1 [gr-qc] 22 Oct 2023.
- E Ahmadi-Azar, K Atazadeh, and A Eghbali, J. Geom. Methods Mod. Phys. 21, 11 (2024) 2450192.
- R Conte, ‟The Painleve Property: One Century Later”, New York: Springer (2012).
- J Hietarinta, Rep. 147, 2 (1987) 84.
- M J Prelle and M F Singer, Math. Soc. 279, 1 (1983) 215.
- H A Buchdahl, J. 140 (1964) 1512.
- L G S Duarte, et al., Phys. A: Math. Gen. 34, 14 (2001) 3015.
- V K Chandrasekar, M Senthilvelan, and M Lakshman, Soc. A: Math. Phys. Eng. Sci. 461 (2005) 2451.
- V K Chandrasekar, M Senthilvelan, and M Lakshman, R. Soc. A 465 (2009) 609.
- L Zhi-Mei, Acta Physica. Sinica 59, 6 (2010) 3633.
- V k Chandrasekar, M Senthilvelan, and M Lakshman, Nonlinear Math. Phys. 12 (2005) 184.
- A Einstein, Phys. 354, 7 (1916) 769.
- K Schwarzschild, Kgl. Preuss. Akad. Wiss. 7 (1916) 189.
- V Ferrari, L Gualtiri, and P Pani, ‟General Relativity and its Applications: Black Holes, Comoact Stars and Gravitational Waves”, Francis, CRC Press (2021).
- GrØn and S Hervik, ‟Einstein’s General Theory of Relativity: With Modern Applications in Relat- ivity”, New York: Springer (2007).
- T Padmanabhan, ‟Gravitation: Foundations and Frontiers”, Cambridge; Cambridge University Press (2010).
- R C Tolman, ‟Relativity Thermodynamics and Cosmology”, New York: Dover Publications, Inc. (1987).
- A H Taub, Rel. Grav. 36, 12 (2004) 2699.
- B J Cantwell, ‟Introduction to Symmetry Analysis”, Cambridge: Cambridge University Press (2002).
- R Mohanasubha, et al., arXiv: 1502.03914v1 (2015).
- V K Chandrasekar, M Senthilvelan, and M Lakshman, R Soc. A 465 (2009) 609.
- V K Chandrasekar, M Senthilvelan, and M Lakshman, Nonlinear Math. Phys. 12 (2005) 184.
- L G S Duarte, and L A C Pda Mota, Math. Phys. 50 (2009) 013514.
- M Manoranjani, et al., J. Nonl. Mech. 118 (2020) 103284.
- R Mohanasubha, et al., R. Soc. A 470, 2163 (2013) 20130656.
- C Muriel and J L Romero, Phys A: Math. Theor. 42 (2009) 365207.
- G G Polat and T zer, Computa. Nonli. Dyn. 12 (2017) 041001.
- G G Polat, Phys. J. Plus 134 (2019) 389.
- A Bhuvaneswari, R A Kraenkel, and M Senthilvelan, Nonlinear Anal. Real World Appl. 13 (2012) 1102.
- C Muriel, J L Romero and A Ruiz, IMA J. Appl. Math., 00 (2017) 1.
- C Muriel and J L Romero, Nonl. Math. Phys. 15 (2008) 290.
- H C Ohanian and R Ruffini, ‟Gravitation and Space-Time”, Cambridge: Cambridge University Press (2013).
- F Kottler, Phy. 56, 410 (1918) 26.
- K D Krori, P Borgohain, and K Das, Rel. Grav., 21, 11 (1989) 1099.
- W Rindler, ‟Essential Relativity: Special, General, and Cosmological”, New York: Springer (1977).